
Extending the Spreadsheet to Illustrate Basic
CPU Operations in a Computer Literacy Course

by
Richard E. Smith, Ph.D.

Department of Quantitative Methods and Computer Science
University of St. Thomas

402 O’Shaughnessy Science Hall
2115 Summit Avenue

St. Paul, Minnesota 55015-1079
Email: resmith@stthomas.edu

Abstract

The computer literacy course at the University of St. Thomas seeks to provide

students with a broad background in computing so that they can understand concepts

they will encounter in real-world computers, like the meaning of a cycle within a central

processing unit (CPU). The behavior of a cycle establishes a CPU’s cycle speed, which

is often an important discriminator when selecting a computer. Teaching the concept of a

CPU cycle has become more difficult as the course has moved away from simple

programming languages, like BASIC, towards problem-solving applications like

spreadsheets and desktop databases. SimpleCPU is a macro package that uses a

spreadsheet to provide an inside view of CPU operation, and it has been used to

introduce CPU fundamentals in the computer literacy course. The instructor uses the

package interactively to illustrate CPU operation to the class on a large screen. Students

use the package individually to write and trace the execution of their own “machine

language” programs. SimpleCPU has two advantages over “black box” CPU simulations,

like the “Little Man Computer.” First, SimpleCPU is integrated into the spreadsheet that

is already part of the course curriculum, which simplifies matters for novice computer

users as well as the instructor. Second, students can examine any part of the simulation

directly by looking in spreadsheet cells and reading the single page of macro definitions.

Nothing is hidden in object code or an unfamiliar language. The package can also be

used with a computer architecture course, giving students a low-cost way to build and

test their own simple processor designs.

Introduction

Introductory computer literacy has always posed a challenge to instructors. Although

students generally enter college with a lot of personal computer experience, those

students taking introductory literacy courses can still pose a challenge when trying to

convey a sense of how computers operate internally. As with many topics, a hands-on

approach seems most effective.

For teaching internal computer operation, many rely on simulations of a computer’s

central processing unit (CPU). A well-known example is the Little Man Computer (LMC)

which is used in at least one computer design textbook [1]. The LMC was originally

developed in 1965 by Stuart Madnick at MIT and is generally used as a stand-alone

program. This can be a shortcoming in an introductory computer literacy course. A

significant number of students in these courses are already intimidated by computer

programs and the LMC represents another program to learn. The instructor dilutes the

message when the students must both learn how to use the LMC program and also

learn what it means.

At the University of St. Thomas we have introduced a CPU simulation called the

“SimpleCPU.” The simulation operates within a Microsoft Excel spreadsheet. Since

Excel is already part of the introductory literacy course, the CPU simulation simply adds

on to a program the students have already learned. The SimpleCPU lets students see

how the insides of a simple CPU works. There are a small number of “registers” whose

contents control what happens. There is the notion of a “processor cycle” by which the

CPU takes the steps necessary to execute a computer program. The cycle corresponds

directly to the concept behind widely-advertised computer speeds (“the new Pentium

operates at a rate of 3.0 GHz”). The SimpleCPU gives the students a way of relating

those statistics to a tangible phenomenon. The SimpleCPU also allows students to

experiment with programming in a realistic “machine language” represented numerically

instead of textually. This combination of capabilities gives the students hands-on

experience with essential concepts of computer internals.

The SimpleCPU Architecture

Figure 1 shows the SimpleCPU spreadsheet as it appears to the students. The

leftmost column on the spreadsheet, column A, provides the RAM used by the

SimpleCPU. Each cell from A1 to A99 represents a single location in RAM. Instructions

or data may reside in RAM cells. Each cell has a unique address that is the same as its

row number. Since there is no row 0 in a spreadsheet, there is no location 0, either.

The SimpleCPU uses an instruction set that is as simple as possible. At present,

there are only seven instructions. As with classic computer instruction sets, the CPU

begins executing a program at a selected location in RAM and executes the instructions

stored there in sequential order, one after another. A summary of the SimpleCPU

instruction set appears at the bottom of the window in Figure 1.

Figure 1: SimpleCPU spreadsheet with the sample program

Both the Add and Store instructions contain a reference to a location in memory. The

Add instruction retrieves the data stored in the referenced location and adds that data to

the contents of the internal accumulator register, called the AC. The Store instruction

simply takes the contents of the AC and stores it in the referenced memory location. The

Jump instruction also refers to a memory location. When the CPU executes a Jump, it

changes the location from where it retrieves its instructions, and starts retrieving

instructions from the location given in the Jump instruction.

In addition to the Add, Store, and Jump instructions, there are four additional

instructions that do not include a memory address. The Invert instruction negates the

contents of the AC. The Clear instruction sets the contents of the AC to zero. The Stop

instruction causes the CPU to stop executing instructions until it is manually restarted.

Since “No-Op” is an abbreviation for “no operation,” the CPU does nothing when it

encounters a No-Op instruction.

Although this instruction set may still seem too trivial to perform any sort of serious

calculation, it is in fact based on a real computer. The computer was called the TX-0, it

was finished in 1957, and it was one of the earliest computers to used transistor circuits

[2,3]. The SimpleCPU is missing certain features of the TX-0 CPU, but features will be

added as required to improve the teaching of introductory CPU concepts. Potential

improvements are discussed later in this paper.

The CPU uses two memory cycles to execute each instruction. The first cycle, called

the Fetch cycle, retrieves from RAM the instruction to be performed. The second cycle,

the Execute cycle, executes that instruction, fetching or storing data in RAM if required.

At the end of the Execute cycle, the CPU locates the next instruction so that the next

Fetch cycle can retrieve it.

In the SimpleCPU, the operator runs a program by directing the spreadsheet to

execute one CPU cycle at a time. Each cycle is performed by executing a macro tied to

the Control-W keystroke. The operator can reset and initialize the CPU by running a

different macro tied to the Control-R keystroke.

Executing the Sample Program

Below is a list of SimpleCPU instructions that form a very simple program. For as

long as that program runs, it doubles the number in storage location 5. The RAM in

Figure 1 contains the same program, encoded in the numeric form that the SimpleCPU

understands.

1. Clear

2. Add from location 5

3. Store to location 5

4. Jump to location 2

5. 1

Each time the CPU executes instruction 2, it doubles the contents of the accumulator.

Each time it executes instruction 3, it saves the doubled number. Each time it executes

instruction 4, it jumps back to instruction 2, which repeats the process. Note that the

program will never try to treat location 5 as an instruction, since it always jumps back to

2 before reaching location 5.

The SimpleCPU Implementation

Fundamentally, a computer consists of a lot of storage registers (RAM) combined

with some calculating logic and some registers to manage the execution of the

computer’s program. The spreadsheet’s cells provide the storage registers needed and,

unlike hardware registers, the contents are immediately visible to the operator. The

calculating functions of the spreadsheet provide the calculating logic needed both to

implement arithmetic instructions like Add and control functions like Jump.

The SimpleCPU simulation implements CPU state and memory modification through

the “cycle” macro that is tied to the Control-W keystroke. This macro implements a

general-purpose CPU cycle that may include writing data to a location in RAM. To set up

the cycle, the spreadsheet looks at its current state as given by the Fetch cycle flag, AC,

PC, and IR, located in spreadsheet cells D2 through D4. The spreadsheet calculates

new values for each of these, using calculations stored in locations E2 through E4.

When executed, the cycle macro performs two steps. One step copies the new values

(E2 through E4) into the current values (D2 through D4). The other step writes a value to

a location in RAM if required by the current instruction. Both of these steps must be

performed by a macro since there is no other way to directly modify spreadsheet cells in

this manner.

Experience with Students: Informal Observations

Introductory computer literacy students performed much more successfully on exams

that covered CPU concepts after being taught with the SimpleCPU simulation. The

students had an opportunity to write machine language programs and watch them

execute in a controlled environment. The two-cycle simulation gave them a chance to

see what it meant to execute computer operations across multiple steps. Unlike other

approaches to introductory sequential programming, the students could see exactly what

the computer was doing with their short programs at every step in the process.

Moreover, students curious about the details of CPU operation could directly

examine every portion of the simulation. “Next state” calculations were immediately

available by examining the appropriate cells. The cycle macro was also directly available

for inspection in Visual Basic. Students of computer organization and architecture could

even extend the definitions to support additional cycles and more sophisticated

instruction sets. While this capability is also available in variants of the SMC [4], the

spreadsheet-based simulation usually requires less support overhead since the

spreadsheet software is already available to most students.

Potential Improvements

The following improvements would expand the range of programs the students could

experiment with:

1. Conditional control flow – there need to be one or more instructions that use

the results of calculations to alter the program’s control flow. The TX-0’s Jump

instruction was actually a conditional instruction that only jumped if the

accumulator contained a negative number. That is one way to do it.

2. Input/output – students find it hard to relate what they see at the CPU level to

what they see in large-scale computer behavior, and that involves input/output

devices.

3. Address arithmetic – there needs to be a way for programs to compute the

addresses of storage locations they use, instead of always storing and

fetching from static locations. The TX-0 used self-modifying code, but that’s

probably not a good thing to teach in an introductory course.

References

1. Englander, Irv, The Architecture of Computer Hardware and Software
Systems: An Information Technology Approach, 2003: John Wiley & Sons,
New York.

2. Gilmore, J. T., Jr., and H. P. Peterson, “A Functional Description of the TX-0
Computer,” Memorandum 6M-4789-1, MIT Lincoln Laboratory, Lincoln, MA,
October 1958. On-line (retrieved 8 July 2004) at http://bitsavers.org/pdf/mit/tx-
0/6M-4789-1_TX0_funcDescr.pdf

3. Bell, C. Gordon, J. Craig Mudge, and John E. McNamara, Computer
Engineering: A DEC View of Hardware Design, Digital Press, Bedford MA,
1978.

4. Osborne, Hugh, "The Postroom Computer," Journal on Educational
Resources in Computing, Volume 1, Issue 4 (December 2001), pp. 81 - 110.

